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Abstract
The formation and mechanical properties of a polymer network on and between
two flat parallel surfaces are investigated. Most treatments of surface-attached
polymers have been limited to scaling theory. In the present investigation we
probe the physics of the system by means of a mathematical description of the
random crosslinking of ideal (or phantom) chains. We modify an existing bulk
model of network formation by Deam and Edwards, with polymer–polymer
crosslinks, to include surfaces and polymer–surface crosslinks. We investigate
two variations of this model: in the first place, the polymer–surface links are
formed anywhere along the contours of the long, ideal polymer chains. In the
second brush network model, the surface links are restricted to one endpoint
of each macromolecule. Within the framework of replica theory, we compute
statistical averages and the elastic properties of the systems such as the stress–
strain relationship. In both cases the elastic modulus of the bulk network is
altered, and has a characteristic form due to the confinement. Furthermore, we
find that the stress–strain relationship depends on the manner of crosslinking.

PACS numbers: 61.41.+e, 82.35.Gh

1. Introduction

Polymers in confining geometries exhibit very specific and interesting properties. In particular,
understanding the formation and properties of polymer networks crosslinked at and between
surfaces is crucial for a number of applications, where surfaces have to be protected against
forms of mechanical or chemical stress, such as abrasion and corrosion [1]. Surface-attached
networks also play an important role in several biomedical concepts, for example, to provide
biocompatible, but stable coatings on implant surfaces [2]. Most theoretical treatments of
these types of systems have been on the level of scaling theory [3], with few analytical
approaches. Recently, Allegra and Raos [4] investigated a confined polymer network, without
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the possibility of wall attachments, and modelled the effect of confining walls by a harmonic
potential.

In this work, we investigate the elastic properties of a polymer network that has formed
between two, parallel planar surfaces. The spacing hz between the walls is chosen to be narrow
relative to the average size of the polymer. We model the system as a three-dimensional
network of long macromolecules that form permanent, but random, bonds with each other
as well as with the confining surfaces. The chains are assumed to be ideal. Consequently,
the calculations presented here will only involve the bulk crosslinks, surface attachments and
confinement of Gaussian chains, neglecting both internal energy contributions and topology
(entanglement constraints). The ideal or phantom model is the customary first approach in
solving polymer theory problems.

In this paper, we focus on evaluating the free energy of deformation to determine the stress–
strain relationship for the securely gelled network system. As a rule, a gel sample’s volume
will be conserved during strain. The macroscopic deformation of a point, r → r′ = Λ · r,
where

Λ =

λ− 1
2 0 0

0 λ− 1
2 0

0 0 λ

 λ > 0 (1.1)

is then suitably described by the above isovolumetric deformation tensor Λ [5]. The constancy
of volume during deformation makes it possible to define the complete state of strain in terms
of a single parameter λ. In the simplest, ideal case, the crosslinks together with entropic
spring behaviour of the chains are responsible for network elasticity. The classical theory of
rubber elasticity [6] predicts that the free energy F of deformation is proportional to the sum
of squares of the principle extension ratios:

F = NckBT
∑

i=x,y,z

λ2
i (1.2)

where kB is the Boltzmann constant, T is the temperature and Nc is the crosslink density of the
network sample. A major discrepancy of this model is that it assumes an affine deformation: if
a macroscopic network sample is deformed by Λ, then the end-to-end vector R of any subchain
between two junction points will be equal to Λ · R, after deformation. The affinity assumption
implies that the crosslinks do not fluctuate around their affinely deformed positions. In the
James and Guth model [7], the crosslinks are essentially unrestricted, and the resultant free
energy in (1.2) is altered by a factor of 1

2 .
In 1975 a pioneering network model was introduced by Deam and Edwards [8], which

models the effect of the network on a given chain by a harmonic localizing potential. In order
to calculate the free energy of deformation, they resorted to a variational approach and the
replica method familiar from spin glass theory [9]. The resultant Deam and Edwards free
energy (for a network regarded as one giant chain of contour length L, cut-off length �c and
effective segment �—also known as the Kuhn length—such that L � � for a flexible chain)

FDE � kBT

1

2

Nc

(1 + c/ρ)

∑
i=x,y,z

λ2
i − 3Nc

2
ln

6Nc

�L
+

3Nc

2

 (1.3)

with constants given by

c ≡ 1

2
√

�c

(
3

2π�

) 3
2

and ρ ≡ L/V (1.4)
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Figure 1. (a) A simplified illustration of a very dense melt of ideal chains, confined between
two walls. (b) A confined surface-attached network. The wall links are situated an infinitesimal
distance ε from the wall surface.

again shows the same strain dependence as (1.2), but with a different front factor and more
terms depending on the crosslink density, not the affine deformation.

A more recent network model by Panyukov and Rabin [10], based on the Deam and
Edwards model of instantaneous crosslinking of ideal chains, confirms the free energy (1.3).
However, they obtain a mean-field free energy by means of an elegant field theoretic method
involving a double limiting procedure: the replica trick and a generalization of the deGennes’
n = 0 method. In this paper, the aim is to use the Deam and Edwards concept of a harmonic
localizing potential variational ansatz as a more intuitive approach to treating the crosslink
constraints. We start by expressing the partition function of the system. This is done by
adapting the Deam and Edwards [8] model of bulk network formation so that it incorporates
the surface restrictions as well as additional surface–polymer crosslinks as mathematical
constraints in the partition function.

A great number of chemical fabrication techniques will give rise to such a surface-attached
network [11, 12]. We therefore explore two statistical mechanics models, both rooted in the
Deam and Edwards theory, but corresponding to different preparation routes. In the first case,
both crosslinks of the network and surface bonds are formed simultaneously from a collection
of confined chains. The effect of the crosslinked network on a given chain segment (monomer)
is modelled by placing each monomer in a homogeneous harmonic localizing potential. In the
second model, the network crosslinking takes place in a brush-like system of surface-attached
polymer chains. In this case, we impose an inhomogeneous harmonic localizing potential.
Both models accommodate instantaneous crosslinking, which facilitates computation within
the framework of equilibrium statistical mechanics.

The paper is organized as follows: first we present the homogeneous localization
formalism (melt network model), variational calculation and results. A similar treatment
for the inhomogeneous localization case (brush network model) follows in section 3. We
compare the results of the two models and summarize our findings in the concluding section.

2. The melt network

Let a single long flexible macromolecule of total contourlength L be denoted by the path
R(s), where s ∈ [0, L] is the arclength coordinate. Prior to linking, we have a melt
comprising M independent ideal chains, which may be visualized as a rather dense, overlapping
and interpenetrating polymer solution. All forces between the chains, except at points of
crosslinkage, are ignored and each chain is assumed to be free to take on any conformation
in the confined region. The confinement formalism must ensure that all the chains vanish
beyond the boundaries, situated at say z = 0 and z = hz, as illustrated in figure 1(a).
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We assign to each macromolecule a statistical weight given by the Wiener measure [13]. The
partition function of the confined system is then given by the product of M Feynman–Wiener
path integrals [14]:

Z
({Ri , R′

i;Li}
) = N

{
M∏
i=1

∫ Ri (L)=Ri

Ri (0)=R′
i

[DRi (s)]walls

}
e− 3

2�

∑M
i=1

∫ L

0

(
∂Ri (s)

∂s

)2
ds (2.1)

= N
∫ M∏

i=1

[DRi (s)] exp

[
M∑
i=1

∫ L

0
ds

(
− 3

2�
Ṙ2

i (s) + A[Ri (s)]

)]
. (2.2)

The normalization N refers to the number of configurations of a collection of M completely
free polymer chains, each starting at R′

i and ending at Ri in L/� steps, with Kuhn steplength �.
In (2.2) we express the partition function as an unconfined integration by including the effect
of the confining walls, which act as a constraint in the partition function (2.1), as a square well
potential,

A[Ri (s)] ≡ ln[�(Ri (s) · ẑ)] + ln[�(hz − Ri (s) · ẑ)] (2.3)

in terms of continuous arclength variables, and � is the unit stepfunction defined by

�(R) =
{

1 if R > 0
0 otherwise

. (2.4)

2.1. Network formation

During network formation, the macromolecules form permanent links with one another as
well as with the confining surface, resulting in the system shown in figure 1(b). Due to the
finite size of the polymer monomers, wall links are localized a small distance ε ∼ � from
the wall surface [15]. Let the set of crosslink locations—a total of Nc in the bulk and 1

2Nw

at each of the walls—on the chains be denoted by {S}. A crosslinkage that joins points s
j

i

and si
j on chains labelled i and j , respectively, is described mathematically by a Dirac delta

constraint, δ
[
Ri

(
s
j

i

)− Rj

(
si
j

)]
. Similarly, the constraint δ[Ri (s) − η(xi, yi, ε)], with η being

a three-dimensional vector determining the wall-link positions, represents a wall linkage. The
set {S} of linkages is unknown prior to network formation, and will differ from one specimen
to the next. These random crosslinks represent quenched disorder in the system. Adopting
the philosophy of Deam and Edwards [8], we choose the distribution of the crosslinkages
P({S}) in the resultant network to be the probability of the crosslinkages an instant before
linking. This simplified history-dependent situation is equivalent to a system where the future
crosslinks just touch prior to an instantaneous linking.

2.2. Implementing replicas

Since the set {S} is fixed for a specific network sample, the set and its linking history will
remain unaltered if the specimen is deformed in some way. Let F({S}) be the free energy of
a particular sample that has been subjected to strain after network formation. The effective
free energy of elasticity F(Λ) is obtained by taking the quenched average of the sample free
energy over all possible realizations of the arclength locations {S},

F(Λ) =
∫

P({S})F ({S}) dSi =
∫

P({S}) lnZ({S}) dSi . (2.5)

The averaging of the logarithm in (2.5) is facilitated by using the mathematical identity,
limn→0

Zn−1
n

= lnZ or ∂
∂n
Zn|n=0 = lnZ , and replicating the system n times. For the sake
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of easing the notation, we model the network by one large polymer of total length L. Since
we are interested in a resulting network with a sufficiently high crosslink density, we assume
that the long chain is involved in numerous crosslinkages. The constraint—averaged over all
possible positions of the links—that picks out the Nc crosslinks is given by[∫ L

0
ds

∫ L

0
ds ′

n∏
α=0

δ[R(α)(s) − R(α)(s ′)]

]Nc

. (2.6)

The wall links are replicated in a similar manner. At this point, it is possible to incorporate
the disorder distribution P({S}), when the chains touch before strain, as a zeroth replica. The
effective free energy will eventually be identified via the coefficient of n in the following
generalized partition function [8]:

Z(n) = N
∫

[DR(0)(s)]
∫̃ [ n∏

α=1

DR(α)(s)

]
exp

{
− 3

2�

n∑
α=0

∫ L

0
Ṙ(α)2 ds

+
∫ L

0
A[R(0)(s)] ds +

n∑
α=1

∫ L

0
Ã[R(α)(s)] ds

}

×
[∫ L

0
ds

∫ L

0
ds ′

n∏
α=0

δ(R(α)(s) − R(α)(s ′))

]Nc

×
[∫ L

0
ds

∫
dx dy

n∏
α=0

δ(R(α)(s) − η(α)(x, y, ε))

]Nw/2

×
[∫ L

0
ds

∫
dx dy

n∏
α=0

δ(R(α)(s) − η(α)(x, y, hz − ε))

]Nw/2

. (2.7)

Note that the crosslink points {S} are common to all the replicas, and so we can easily average
over them. The infinitely deep, square well potential representing the wall confinement (2.3)
is denoted by A in the unstrained system and by Ã for the strained replicas:

Ã[R(s)] ≡ ln[�(R(s) · ẑ)] + ln[�(λzhz − R(s) · ẑ)]. (2.8)

The integrations
∫̃

in (2.7) imply integration over the n deformed systems, each with volume
Ṽ = ΛV , with V being the volume of the undeformed replica system and Λ being a
deformation tensor such as (1.1).

2.3. The variational approach

Since the crosslink and confinement constraints provide a difficult path integral for the partition
function, we employ the Feynman variational principle [16]. First, we introduce a new set of
coordinates X(β) ≡ {X(0), X(1), Y(m)}|{m=1, ..., (n−1)}, with X(1) being a relative coordinate, and
X(0) being the centre-of-mass coordinate of all the replicas. The n − 1 remaining coordinates
are simply rotations in replica space and give the deviation of the chains from the affine
position. We define the new set of coordinates in the standard way (for example see [17] and
appendix A):

X
(0)
j = R

(0)
j +

∑n
α=1 λjR

(α)
j(

1 + nλ2
j

) 1
2

(2.9a)
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X
(1)
j =

√
nλjR

(0)
j − 1√

n

∑n
α=1 R

(α)
j(

1 + nλ2
j

) 1
2

(2.9b)

Y
(m)
j = 1√

n

n∑
α=1

e(2π imα)/nR
(α)
j m = 1, 2, . . . , (n − 1) (2.9c)

where the j ’s are Cartesian indices. These coordinates define an orthonormal transformation
T with Jacobian equal to 1. The λj ’s are the elements on the diagonal of the deformation
tensor Λ.

The crosslink constraints are exponentiated as usual by means of chemical potentials,
BN = ∮

C
N!

2π iµN+1 eµB dµ, resulting in the following compact notation:

e−F(µw,µc,n)/kBT =
∮ ∮ ∫  n∏

β=0

DX(β)

 e−W+µcXc+µwXw+A ≡
∫

[int] e−H/kBT (2.10)

where H denotes the pseudo-Hamiltonian for network connectivity and confinement, and
comprises the Wiener term,

W ≡ − 3

2�

∫ L

0

[
Ẋ(0)2(s) + Ẋ(1)2(s) +

n−1∑
m=1

|Ẏ(m)(s)|2
]

ds (2.11)

the bulk crosslinks

µcXc ≡ µc

∫ L

0
ds

∫ L

0
ds ′

n∏
β=0

δ
(
X(β)(s) − X(β)(s ′)

)
(2.12)

the wall crosslinks

µwXw ≡ µw

∫ L

0
ds

∫ +∞

−∞
dx dy

[
δ
(
X(0)(s) − ν(0)(x, y, ε)

)
δ
(
X(1)(s)

) n−1∏
m=1

δ
(
Y(m)(s)

)
+ δ
(
X(0)(s) − ν(0)(x, y, hz − ε)

)
δ
(
X(1)(s)

) n−1∏
m=1

δ
(
Y(m)(s)

)]
(2.13)

and wall constraint,

A ≡
∫ L

0
ds

A
(
T 00

z X(0)
z + T 10

z X(1)
z

)
+

n∑
β=1

Ã
(
T 0β

z X(0)
z + T 1β

z X(1)
z +

n−1∑
m=1

T (m+1)β
z Y (m)

z

) .

(2.14)

We employ a harmonic trial potential to simulate the crosslink constraints

Q =
∑

i=x,y,z

q2
i �

6

∫ L

0
ds

[
X

(1)2
i +

n−1∑
m=1

|Y (m)
i |2

]
(2.15)

with qi being the localization parameter and a measure of the limits within which each
crosslink is allowed to fluctuate (if qi is small, the crosslinking is weak). Next, we introduce
a secondary trial potential, which only contains the centre-of-mass coordinate X(0) and is
defined as follows:

A0 ≡
∫ L

0
ds ln

[
�
(
T 00X(0)

z (s)
)
�
(
hz − T 00X(0)

z (s)
)]

. (2.16)
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Using the Feynman variational principle, expression (2.10) changes to

e−F(µw,µc,n)/kBT �
∫

e〈Q+µcXc+µwXw+A−A0〉−W−Q+A0 (2.17a)

=
∫

e〈Q+µcXc+µwXw+A−A0〉
(∫

G
)

(2.17b)

≡ e−Fvar(qx ,qz)/kBT = Zvar (2.17c)

where 〈· · ·〉 means averaging with respect to the Green’s function given by∫
G =

∫
[DX(0)][DX(1)]

[
n−1∏
m=1

DY(m)

]
e−W−Q+A0︸ ︷︷ ︸
≡e−Hvar/kBT

. (2.18)

The resultant variational free energy is minimized with respect to the trial function, to give
the best possible approximation to the real free energy F (for the specific choice of Hvar),
that is, F ≈ minHvar {Fvar}. The average in the exponent in (2.17b) contains a reduced wall
constraint, A − A0, contributing terms of the order q−1 and smaller. In this paper, we assume
a high crosslink density. This implies a large localization parameter q, so that terms of the
order of q−1 are negligible relative to other terms, ∼q and ∼ ln q of (2.19)–(2.21), which play
dominant roles in minimizing the free energy. The centre-of-mass coordinate X(0) is the only
transformed coordinate that represents physical position of the polymer chains; the β > 0
coordinates are therefore only expected to play a relatively insignificant role in localizing the
network. Within the variational calculation, a softened wall potential A and high crosslink
density, the averaged wall constraint becomes negligible, that is 〈A − A0〉 � 0.

Evaluating the variational free energy Fvar(qx, qz) involves two steps. The first is
calculation of the Green’s functions comprising G (2.18). These are well-known solutions of
differential equations for a random walk and are listed in appendix B. The second step is the
evaluation of the weighted average 〈Q+µcXc +µwXw〉. In the limit of total chain length larger
than the spacing between the plates, hz  √

L�, and a sufficiently gelled system, �qi � 1, we
obtain

〈Q〉 = n

4

[
3 +

�L
3

(qz + 2qx)

]
(2.19)

〈µwXw〉 � 8µwπ2ε2L
h3

z(1 + nλ2)1/2

(qz

π

)n/2 (qx

π

)n

(2.20)

and

〈µcXc〉 = 3µc

2
√

1 + nλ2hz

(
qzq

2
x

8π3

)n/2 [
hzL2

V (1 + n/λ)
+

3L
2π�

ln

(
L
�c

)]
. (2.21)

The chain cut-off length �c, over which the chain is not flexible but stiff, has a magnitude of
the order of the Kuhn length �. The variational free energy Fvar(qx, qz) of the original gel
system can be identified as the coefficient of n as follows:

−Fvar/kBT = ∂Zvar/∂n|n=0

Zvar(n = 0)
(2.22a)

= 1

2

Nc

(1 + c/ρ)

 ∑
i=x,y,z

λ2
i +

cλ2
z

ρ

 +
Nwλ2

z

2
− �π2λ2

zL
6h2

z

+
�L
12

(qz + 2qx) − (Nc + Nw)

2

∑
i

ln
( qi

2π

)
(2.22b)
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where

c = 3

2π�hz

ln
L
�c

and ρ = L/V . (2.23)

Next the free energy is minimized with respect to qx and qz to find the best approximation to
the real free energy of the system. The resultant stationary points are isotropic and deformation
independent:

qx = 6(Nw + Nc)

�L
= qz. (2.24)

Substituting the q-values into (2.22b), we find that the free energy on deformation has the
following upper bound (showing only the λ-dependent terms):

F(Λ) � kBT

1

2

Nc

(1 + c/ρ)

[ ∑
i=x,y,z

λ2
i +

cλ2
z

ρ

]
+

Nwλ2
z

2
− �π2λ2

zL
6h2

z

 . (2.25)

2.4. The stress–strain relationship

The stress f , which is the elastic force per unit area of the undeformed cross-section of the
sample, in the specific case of a uniaxial isovolumetric deformation (1.1), is given by

f = 1

V

∂F
∂λ

= kBT

V

[
Nc

(1 + c/ρ)

{
λ − 1

λ2
+

c

ρ
λ

}
+

(
Nw − π2�L

3h2
z

)
λ

]
. (2.26)

The underlined part in (2.26) coincides with the well-known result of the classical theory of
high elasticity of polymer networks [7], apart from the different front factor g ≡ (1 + c/ρ)−1,
which may be attributed to wasted loops [8].

The wall confinement introduces new terms in the free energy of the network, dependent
on the spacing hz between the walls. For example, the typical confinement term ∼kBT

�L
h2

z
is

consistent with earlier results for simpler networks [19] and a single chain with an effective
contourlength L [20, 21].

Unfortunately, the model employed in this section is too crude to differentiate between
the types of crosslinking. This resulted in the wall links and bulk links being treated in the
same manner. Intuitively, the degree of localization, manifested in the values qx and qz, is
expected to depend on the spatial coordinate. In the next section a polymer brush network is
investigated. Within this framework, it is possible to distinguish, in a simple albeit concise
manner, between the localization that each type of crosslink imposes.

3. The brush network

In this section we consider the network in figure 2(b) formed from two grafted polymer
brushes. The term polymer brush was invented by de Gennes [22] to describe an architecture
in which polymer chains are terminally tethered to a surface at a high density. The best
way to realize a brush network is to grow chains directly at the surface of the wall. This
approach is called grafting and is shown in figure 2(a). Firstly the surface is covered with a
monolayer of initiator molecules, from which long molecules grow like a lawn1. Secondly,
the brush chains are sufficiently crosslinked. Each brush consists of 1

2Nw ideal chains that are
1 We assume, as in the previous section, that the polymer chains are linked an infinitesimal distance ε away from the
wall surface. In this case, the ε can be interpreted as the size of the initiator molecules, from which the chains are
grafted.
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(a) (b)

h

z =0

z

hz

s =0

s =L

Figure 2. (a) A schematic illustration of polymer chains grafting from a solid surface, a brush,
consisting of polymer chains permanently attached to a flat, solid surface. (b) A brush network.

permanently attached via endpoints to the confining surface. Each chain has contourlength
L and participates in Nc crosslinkages. The formation of a brush network differs from
the melt network in section 2, since surface attachment and crosslinking are not performed
simultaneously, but in subsequent steps.

3.1. Trial potential for the brush network

The anticipated behaviour (within the replica scheme) of a surface-attached, crosslinked
polymer includes some kind of localization of the polymer. In section 2 we employed the idea
of Deam and Edwards [8], which treats this localization to be homogeneous and translation
invariant, that is qx = qz = constant in the trial potential Q given by (2.15). We expect the
polymer to be localized differently near the surface than in the bulk region away from the
surfaces. This implies that the variational parameters qi should depend on the spatial height
z(s), of a polymer segment s, between the plates. The only coordinate in the transformed
replica system (2.9a), which represents physical position of the chain segments, is the ‘centre-
of-mass’ coordinate X(0). Mathematically, it is thus possible to distinguish between different
localizations, by using a trial potential of the form

Q ∼

∫
ds q2 (z(s))

n∑
β=1

X(β)2 (3.1)

with the localization parameter q being a function of z(s) ≡ ẑ · X(0)(s). Unfortunately, the
path integration of a harmonic potential, which is dependent on the arclength coordinate s and
a mixture of configurational coordinates of different replicas, seems intractable. However,
in a brush network each stretched-out chain is only attached by one endpoint (s = 0) to the
grafting surface, as shown in figure 2(a). Consequently, we choose the average localization
to be solely dependent on s, and not the spatial position of the chain. It is now possible to
simulate the crosslink constraints by the following trial harmonic potential (compare with
(2.15)),

Q = 1

6�

n∑
β=1

(∫ τ

0
ds q2

0 X(β)2 +
∫ L

τ

ds q2
1 X(β)2

)
(3.2)

and thus model the system variationally by means of three variational parameters q0, q1 and
τ , shown in figure 3.
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Figure 3. The s-line depicts the domains of the variational parameters, q0, q1 and τ in (3.2).

3.2. The brush network free energy

The variational calculation for the brush network corresponds to the previous calculation in
section 2.3, except for the new trial potential Q defined in (3.2). In order to simplify the
minimization task, we choose q0 = (1 + γ )q1, with γ being a real number. Referring to the
average 〈Q + µcXc + µwXw〉 calculated in appendix C, the variational free energy in 3(n + 1)

replica space is given by

Zvar(n, q1, γ, τ ) =
Nw∏
i=1

e〈µcXc+µwXw+Q〉
(∫

G
)

(3.3a)

=
Nw∏
i=1

〈Xc〉Nc〈Xw〉Nw e
nq1�

4 (γ τ+L)

(∫
G
)

. (3.3b)

The variational free energy of the original three-dimensional brush network is obtained from
the limiting procedure (2.22a),

Fvar(q1, γ, τ )/kBT = �Nw

4
(L + γ τ) q1 − �Lλ2Nwπ2

6h2
z

− 3

2
Nw ln

(
4 (1 + γ )

2 + γ

)

− 3

2
NcNw ln

( q1

2π

)
− NcNw

3

2
ln (1 + γ )

{
3

π�hz

(
�c −

√
�2

c + τ 2

+
τ

2
ln

[ √
�2

c + τ 2 + τ√
�2

c + τ 2 − τ

])
+

2Nwτ 2

V

}
+

3

2
ln

[
2 (1 + γ )

2 + γ

]{
4Nw (L − τ) τ

V

− 3

π�hz

(
�c +

√
�2

c + L2 −
√

�2
c + (L − τ)2 −

√
�2

c + τ 2

−L ln

[√
�2

c + (L − τ)2 − L + τ√
�2

c + L2 − L

]
− τ ln

[ √
�2

c + τ 2 − τ√
�2

c + (L − τ)2 − L + τ

])}

− NwL2

V

∑
i=x,y,z

λ2
i − 3λ2

z

2π�hz

(
�c −

√
�2

c + L2 +
L

2
ln

[ √
�2

c + L2 + L√
�2

c + L2 − L

])
×
(

2NwL2

V
+

3

π�hz

(
�c −

√
�2

c + L2 +
L

2
ln

[ √
�2

c + L2 + L√
�2

c + L2 − L

]))−1

. (3.4)

Finding the stationary points {q∗
1 , γ ∗, τ ∗}, where Fvar has a global minimum, is formidable

and calls for a numerical calculation. However, it is possible to obtain q∗
1 and γ ∗ (and thus

also q∗
0 ) analytically where γ ∗ is still a function of τ :

q∗
1 = 6Nc

�(L + γ ∗)
and q∗

0 = 6Nc(1 + γ ∗)
�(L + γ ∗)

. (3.5)
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Figure 4. Investigating the influence of the crosslink density Nc on the localization of the polymer.
The leftmost column of graphs depicts the variational free energy as a function of τ . The rightmost
column illustrates that q0 > q1. Plots were rendered with the following kept constant: L = 500,
hz = 20, λ = 1, � = �c = 1, ρ = 0.4.

The value τ ∗, which minimizes the free energy Fvar, is found by plotting the free energy as
a function of τ , and identifying τ ∗ as the value, on region (�c, L − �c), where Fvar(τ ) has a
global minimum.

3.3. The homogeneous brush limit

In a homogeneous brush network, the crosslinks impose a uniform localization on the system.
This situation is obtained by letting τ = 0 or γ = 0 in (3.5) and (3.4) respectively. In this
limit we obtain the usual Deam and Edwards [8] localization parameters, q∗

1 = 6Nc
�L

= q∗
0 , and

the following free energy of deformation

Fhom � kBT

1

2

NcNw

(1 + c/ρ)

[ ∑
i=x,y,z

λ2
i +

c

ρ
λ2

z

]
− π2�Lλ2

zNw

6h2
z

+
λ-independent

terms

 (3.6)

with

ρ = NwL

V
and c ≡ 3

2π�hzL

(
�c −

√
�2

c + L2 +
L

2
ln

[ √
�2

c + L2 + L√
�2

c + L2 − L

])
(3.7)

which closely resembles the free energy (2.25) of the melt network2, apart from a different
c-value (2.23).

3.4. Localization of the polymer brush network

Next, we examine the graphs in figure 4 to see how the linking density Nc influences the
localization of the polymer. Each row in figure 4 corresponds to a different value of Nc. The

2 Here, the total number of crosslinks in the sample is given by NcNw.
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first observation that can be made is that the chains in the ‘surface’ region (q0) are localized to
a greater extent than the chains away from the walls (q1). This follows from the fact that γ ∗ is
positive in the middle column of figure 4, and so we have that q1 < q0 from (3.5). The measure
of the fluctuations of the crosslinks from their affine positions, given by the q-values, is greater
for a chain that is lightly crosslinked as shown in figure 4, than for a network where Nc > Nw.
Since γ ∗ < 1, the q-values (3.5) are primarily influenced by the number of crosslinks NcNw.

3.5. Elasticity

A closed form for the stress–strain relationship is attainable, since the variational parameters
q0, q1 and τ do not depend on the affine deformation of the system. By differentiating the
variational free energy in (3.4) with respect to λ, one obtains the following stress–strain
relationship:

f (λ) = kBT

V

[
NcNw

(1 + c/ρ)

{
λ − 1/λ2 +

c

ρ
λ

}
− π2�LNw

3h2
z

λ

]
(3.8)

where the polymer density ρ and the factor c are defined in (3.7). This result is consistent with
the stress–strain relationship for the melt network apart from different c-values and by letting
L = LNw. In the melt network, both wall links and bulk links are formed simultaneously and
have the freedom to form anywhere along the length of the polymer chains, in contrast with a
brush network. This difference is portrayed in the Nwλ term in (2.26), which is absent from
the brush network stress–strain equation.

4. Conclusion

In this paper we investigated the elastic properties of two different confined, surface-attached
network models. The distance hz between the confining walls was chosen to be smaller than
the effective size

√
L� of the network. Calculations were presented for a sufficiently high

crosslink density—a high localization regime—not a system in the vicinity of the sol-gel
transition point [25].

The melt network of section 2 was formed from pre-existing, confined macromolecules,
that were crosslinked simultaneously to each other and to the confining surface. Since
we employed a harmonic potential identical to that of Deam and Edwards, with isotropic,
homogeneous localization, we found the localization parameters to be equal, qx = qz, and
analogous to that of an unconfined network model. They were namely strain independent,
and proportional to the mean square radius of gyration of a chain piece between two junction
points. In terms of localization, the wall links were treated as bulk links, q = 6(Nc+Nw)

�L , where
L is the effective contourlength of the giant network polymer, � is the Kuhn steplength, and
Nc and Nw are the total number of bulk links and wall links, respectively. The quantity q−1/2

gives a measure of the fluctuation of the network chains from the mean affine deformation
path. In other words, it defines the relative diameter of a tube in which each chain is confined
due to the surrounding crosslink constraints.

Next, we investigated a surface-attached network, fabricated via an instantaneous
crosslinking of two pre-existing polymer brushes. This architecture was specifically chosen
to facilitate an inhomogeneous localization scheme. The effect of the crosslink and wall
constraints was modelled by two constant localization parameters q0 and q1, which were
arclength dependent. We found each chain to be localized to a greater degree near the surface
at which it is attached, than far away from its grafting surface (q0 > q1). The great advantage
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Table 1. The g-factors give an estimate of the percentage fraction of crosslinks that are elastically
active. Estimates are for a network fabricated from Nw = 1000 chains of chain length L = 500,
polymer density ρ = 0.4, chain cut-off length �c = 1 = � and confinement hz = 20, where lengths
are in units of �.

Unconfined Confined

Deam Edwards Melt network Brush network

c 0.17 0.31 0.14
g 0.70 0.56 0.74

of this scheme is the fact that the wall links were not treated as bulk links, but played a role in
the arc length distance over which each constant localization takes effect.

Common to both the brush network and the melt network was the general form (apart
from constants) of the stress–strain relationship f (λ) for a uniaxial, isovolumetric deformation
(recall expressions (2.26) and (3.8)). The underlined part in both these expressions gives the
characteristic curve of classic rubber elasticity models, with the slope characterized by a
different elastic modulus than encountered in the usual unconfined models. There are two
new additions to the result of Deam and Edwards for a model with unconfined, ideal chains.
The first is the c/ρ term, due to wall links and the second, hz-dependent term, is due to the
confinement. Stress–strain measurements in uniaxial extension should therefore be able to
distinguish between wall-link histories and the role of the parameter hz for suitably prepared
systems. To the authors’ knowledge, no such experiments on confined systems have yet been
performed. The front factor g ≡ (1 + c/ρ)−1, also encountered in the Deam and Edwards
result (1.3), gives a measure of the number of elastically active crosslinks in the system (see
table 1).

An obvious improvement of the present phantom (i.e. ideal chain) models should include
trapped entanglements and excluded volume effects. This could for example be based on
a non-Gaussian tube model or slip-link model [26] with non-affine deformation. These
improvements would make it possible to compare theoretical results with simulations (see e.g.
[27]), which generally tend to focus on topological issues.

The variational calculation is extremely difficult when the localization potential depends
on the relevant spatial position, say z(s), between the parallel plates. For this reason, we chose
a simple arclength dependence. However, it might still be possible to find a potential that is
tractable and more representative of the surface-confinement problem.
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Appendix A. Coordinate transformation

The coordinates X
(β)

j (s) = T
βα

j R
(α)
j (s) define an orthogonal transformation with Jacobian

equal to 1. Cartesian coordinates x, y, z are represented by j . The index m runs from 1 to
n − 1; therefore, m = 1 ⇔ β = 2. In matrix form the transformation T may look as follows:
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Tj =


(
1 + nλ2

j

)− 1
2 λj

(
1 + nλ2

j

)− 1
2 λj

(
1 + nλ2

j

)− 1
2 . . .

√
nλj

(
1 + nλ2

j

)− 1
2 − 1√

n

(
1 + nλ2

j

)− 1
2 − 1√

n

(
1 + nλ2

j

)− 1
2 . . .

0 1√
n

e(2π imα)/n 1√
n

e(2π imα)/n . . .

...
...

...
. . .

 . (A.1)

This is the most symmetric transformation method [8], but there also exist other
transformations, notably in [23], where all entries are chosen to be real. The factor

(
1+nλ2

j

)1/2

ensures the orthonormality of the transformation.
The wall-crosslink position vectors η(α) are transformed in the same way as the polymer

chain coordinates R(α) by the transformation T (A.1) as follows: ν
(0)
j (s) = T 0α

j η
(α)
j (s),

ν
(1)
j (s) = T 1α

j η
(α)
j (s) and ω

(m)
j (s) = T mα

j η
(α)
j (s).

Appendix B. The Green’s functions

The following path integrals are well-known solutions to differential equations [16, 24]
describing a free random walk

G0
(
X

(0)
is , X

(0)
is ′ , |s − s ′|) = N

∫ [
DX

(0)
i

]
e− 3

2�

∫ L
0 Ẋ

(0)2
i ds [for i = {x, y}]

= 1

Vi(1 + nλ2)
1
2

+

(
3

2π�|s − s ′|
) 1

2

exp

{
− 3

2�

(
X

(0)
is − X

(0)
is ′
)2

|s − s ′|

}
(B.1)

a random walk confined between two planar surfaces,

G0
(
X(0)

zs , X
(0)
zs ′ , |s − s ′|) = N

∫ [
DX(0)

z

]
exp

{
− 3

2�

∫ L

0
Ẋ(0)2

z ds

+
∫ L

0
ln
[
�
(
T 00X(0)

z

)
�
(
hz − T 00X(0)

z

)]
ds

}
= 2√

1 + nλ2hz

∞∑
p=1

e
− �π2p2

6h2
z

|s−s ′ |
sin

[
πpX(0)

z (s)√
1 + nλ2hz

]
sin

[
πpX(0)

z (s ′)√
1 + nλ2hz

]
(B.2)

and a random walk in a harmonic potential (for replicas β > 0)

Gβ

(
X(β)

s , X(β)

s ′ , |s − s ′|) = N
∫

[DX(β)] e− 3
2�

∫ L
0 Ẋ(β)2 ds− q2

i
l

6

∫ L
0 X(β)2 ds

=
(

qi

2π sinh 1
3�qi |s − s ′|

) 1
2

e
− qi

2

(X(β)2(s)+X(β)2(s′)) cosh 1
3 �qi |s−s′ |−2X(β)(s)X(β)(s′)

sinh 1
3 �qi |s−s′ | . (B.3)

In this paper we investigate the limit
√
L� � hz and accordingly only the first term (p = 1) in

the sum of (B.2) is considered important (see also p 20 of [13]). Furthermore, for a sufficiently
strong localization q, only the lowest eigenfunction significantly contributes to G and it is
acceptable [8] to approximate (B.3) by

Gβ

(
X(β)

s , X
(β)

s ′ , |s − s ′|) �
(qi

π

) 1
2

exp

{
−qi

2

(
X(β)2

s + X
(β)2
s ′ +

�

3
|s − s ′|

)}
(B.4)

such that (B.4) is used to perform the β > 0 bulk-link averages (2.12).
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Appendix C. Brush averages

The weighted average of the bulk-link contribution in (3.3a), with i = 1, 2, . . . , Nw, is

〈µcXc〉 =
〈
µc

Nw∑
j=1

∫ L

0
ds

∫ L

0
ds ′

n∏
β=0

δ
(
X(β)

i (s) − X(β)

j (s ′)
)〉

(C.1)

= 3µc

2hz

√
1 + nλ2

∫ τ

0
ds

∫ τ

0
ds ′
(

2Nwhz

V (1 + n/λ)
+

3

2π�|s − s ′|
)( q0

2π

) 3n
2

+ 2
∫ τ

0
ds

∫ L

τ

ds ′
(

2Nwhz

V (1 + n/λ)
+

3

2π�|s − s ′|
)(

q0q1

π(q0 + q1)

) 3n
2

+
∫ L

τ

ds

∫ L

τ

ds ′
(

2Nwhz

V (1 + n/λ)
+

3

2π�|s − s ′|
)( q1

2π

) 3n
2

. (C.2)

The Gaussian chain model and continuous chain coordinates s are only valid when we look
at length scales larger than a certain length, say �c. When s < �c, the molecule is no longer
a flexible, continuous chain: it consists of monomers with rigid bonds. Therefore, we make
the substitution: |s − s ′|−1 −→ lim�c→0

[
(s − s ′)2 + �2

c

]−1/2
, which leads to a straightforward

integration and the result shown in (3.4).
The wall links in the brush network only occur at s = 0. Consequently, the average

〈µwXw〉 for the melt network is adapted to suit the brush network average (2.13) by the
substitution Xw|s=0 and the absence of the s integration. This leads to

〈µwXw〉 = 4µwπ2ε2

h3
z

. (C.3)

The average of the harmonic trial potential for inhomogeneous localization is given by the
following expression:

〈Q〉 =
〈

�q2
0

6

∫ τ

0
ds

(
X(1)2

i +
n−1∑
m=1

∣∣Y(m)
i

∣∣2) +
�q2

1

6

∫ L

τ

ds

(
X(1)2

i +
n−1∑
m=1

∣∣Y(m)
i

∣∣2)〉 (C.4)

� n�

4
[(q0 − q1) τ + q1L] when q0 � 3

�τ
and q1 � 3

�(L − τ)
. (C.5)
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